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Introduction

The Cray 2 and Cray Y-MP are in many respects very similar computer systems,

particularly when compared with other computer systems currently available. This

similarity extends to the area of floating point arithmetic hardware implementation.

The hardware implementations differ only very slightly, but this difference is sufficient

to cause certain algorithms to exhibit significant increases in error when run on the

Cray Y-MP. This paper describes the differences between the two arithmetic

implementations, details the error behavior differences between the two arithmetics,

and presents a model of how the floating point error behavior influences the error

behavior of the solution of large positive definite systems by Cholesky factorization.

An interesting example was produced by a finite element model of the aeroelastic

behavior of the National Aerospace Plane (NASP). Details of the code may be found in

[1]. The simulation requires the solution of a large sparse symmetric positive definite

system of order 16146. The solution method is a variant of Cholesky factorization

followed by back substitution. The method is computationally efficient and very stable

numerically for this class of matrices. However, identical simulations run on the Cray

2 and Cray Y-MP produce different results. The solution produced by the Cray Y-MP

has two fewer correct decimal digits in the solution than the solution produced by the

Cray 2. Output of identical runs on different computers collected by O. Storaasli is

presented in the following table. Max Displacement is the largest component of the

solution. Norm of Residual is the square root of the sum of the squares of the components

of the residual vector using the computed solution. The results are listed in order of

increasing residual.



Table 1

Computer Max Displacement Norm of Residual

1 28-bit Cray 2 0.447440341 0.48E-18

64-bit Convex 220 0.447440339 0.24E-6

64-bit IRIS 0.447440339 0.34E-6

64-bit IBM 3090 0.447440344 0.12E-5

64-bit Cray 2 0.44744030 3 0.87E-5

64-bit Cray Y-MP 0.447436106 0.12E-3

The results show that the maximum displacement for most of the computer systems

agree to eight decimal digits (rounded), the Cray 2 64 bit solution agrees to seven

decimal digits, and the Y-MP agrees to five decimal digits. Given the similarity of the

two Cray floating point arithmetic implementations, this result is unexpected. Some

background is necessary to provide the framework for a discussion of the problem.

Floating Point Arithmetic Implementations

Floating point arithmetic implementations on current supercomputers vary

widely among.architectures. Supercomputer floating point number formats are

nominally based on 64 bits. The various implementations may be described in terms of

the number of bits assigned to the fractional part of the number (mantissa) and to the

exponent, and the base (or radix) of the number system. The accuracy of computations

in a given floating point implementation will be affected by mantissa length and the

"cleanliness" of the arithmetic. Clean floating point arithmetic is defined by the

property that all floating point operations performed in the arithmetic are accurate

within one-half a unit in the last place [2][3]. IEEE 754 (along with IEEE 854)

compliant floating point arithmetic requires the implementation in the arithmetic

functional units of three extra low order digits, or in a binary machine, three extra bits.

The first extra digit, the guard digit, prevents errors from being introduced in the

result by the final left shift of the mantissa (postnormalization) in multiplication and

subtraction. The second and third extra digits, the round digit and sticky digits, are

required to implement correct symmetric rounding. The sticky digit may be

implemented as a single extra bit regardless of base, hence is often referred to as a

sticky bit. Common floating point arithmetic implementation deficiencies include

imprecise or nonexistent rounding, lack of guard and/or round digits, and lack of a

sticky bit. Combinations of these features can lead to errors of several or more bits for
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various floating point operations. For example, lack of a guard digit in subtraction can

result in answers which are incorrect (most often) in the second to the last place. (It

can be worse.)

Both the Cray-2 and the Cray Y-MP have a binary radix, 48 bits of precision in

the mantissa, and lack a guard digit in subtraction. Neither machine performs correct

symmetric rounding in multiplication. Addition and subtraction in the Y-MP is chopped,

while in the Cray 2 it is prerounded. Prerounding eliminates the bias in error caused

by chopping, but has significantly worse total error than true symmetric rounding. The

unit roundoff for both machines is 2-48, or about 10-15

Errors in the Solution of Linear Systems

Suppose we wish to solve an nxn positive definite system Ax=b. The error in the

solution x is affected by two factors; the accuracy of the computer arithmetic used to

solve the system, and the nearness of the linear system's matrix A to a singular matrix.

The latter can be characterized by the condition number _ of the matrix. _ varies from

a value of one (in the matrix 2-norm) for the best behaved matrices (orthogonal

matrices), to infinity (in all matrix norms) for singular matrices.

Suppose the solution × of the nxn system Ax=b, A nonsingular, is desired. Gaussian

elimination followed by back substitution produces a computed approximation _" to x. An

expression for the relative error ¢ is

IIx- x-'ll
¢--

Ilxll

Define the unit roundoffu by _l-t where 13is the base of the floating point arithmetic,

and t is the number of mantissa bits. From classical error analysis, the relative error e

resulting from the solution of a linear system by Gaussian elimination followed by back

substitution can be as large as the product of the condition number and u:

(1) c<uK

The residual r = b - A_ is often used as measure of the accuracy of solution. The

size of the residual can be related to the size of the of A and E •

IIb-A_ll ___ullAIIIl_ll
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Thisequationsays that Gaussian elimination produces an _' for which the

residual (though not necessarily the relative error) is small.

The IMSL scientific subroutine LFCQS was used to obtain an estimate of the

condition number of greater than 1011 for the matrix from the NASP simulation, from

which equation (1) suggests that there could be as few as four correct decimal digits in a

result produced by the Cray systems. "Classical" error analysis usually leads to overly

pessimistic bounds on the error in the solution. This is particularly true of Cholesky

factorization. In practice, obtained accuracy is often much better than

predicted[4][5][6], and for Cholesky factorization, tighter error bounds have been

obtained[7]. The tighter error bounds, like the classical error bounds, have a

multiplicative dependence on u. Thus, these error analyses fail to predict the difference

in the accuracy obtained on the two Crays, which have the same u.

The Effect of Y-MP Floating Point Arithmetic on the

Accuracy of the Computed Cholesky Factorization

Although the Cray 2 and Cray Y-MP share floating point storage formats, their

respective floating point arithmetic implementations differ. In particular, the methods

for computing floating point additions and subtractions are slightly different. It can be

shown (see Appendix A) that the maximum error incurred in Cray 2 floating point

subtraction is (usually) less than __.1in the last place. However, the Cray Y-MP

floating point subtraction (usually) has errors less than +1 in the second to the last

(47th) bit, or more than twice as large as the error of the Cray 2. This has important

ramifications for the error behavior encountered when certain numerical algorithms on

the Cray Y-MP, including the Cholesky factorization of symmetric positive definite

matrices, are scaled up to larger problem sizes.

Cholesky factorization of a symmetric positive definite matrix A produces a

lower triangular G with positive diagonal entries such that A = GG T. (See, for

instance, [8].) The original matrix A often has a positive main diagonal and mostly

negative off-diagonal entries. During the Cholesky factorization process the diagonal

entries of G are formed using subtraction operations, while the off diagonal entries of G

are formed from mostly addition operations. The Cray Y-MP can produce results from

subtract magnitude floating point operations that are as much as one in the second to the

last place too large. The important point is that the error, if there is one, always makes

the result a little larger. The Cray 2 subtract magnitude floating point operation, and

clean arithmetic implementations such as the VAX, Convex, and IEEE 754, do not. As was



pointed out by W. Kahan [9], making the main diagonal of the Cholesky factor G a little

larger effectively changes the original matrix A, and induces a systematic error in the

solution × of Ax=b.

It can be shown (see Appendix B) that with Cray Y-MP style floating point

arithmetic, the difference in relative errorAe between solution components of model pde

problems computed with Cray-2 style floating point and Y-MP style floating point can

be as much as _2, where n is the size of the system, and e is a small positive constant

about the size of the unit roundoff u. This error is in addition to the error normally

incurred in the factorization procedure. The error incurred in the solution of these

model problems attributable to the factorization is bounded (usually quite loosely) by

equation (1), and can be expected to scale O(n) as the order n of the matrix associated

with the problem is increased. The scaling behavior O(n) of the error in the solution of

the model problem as the problem size is increased is common to most computer

systems; in particular, the Cray 2 exhibits this behavior. Numerical experiments

conducted by N. McCown at NAS [10] found that the observed difference in the relative

errorAE between the Cray 2 and the Cray Y-MP in the solution of large banded positive

definite matrix equations by Cholesky factorization fit a model equation of the form

AE = cn't

where c = u, and 0.8 <_7 <- 1.75. This compares to the analytic prediction (found in

Appendix B) of _ for the solution of the model problem using Cholesky factorization

and Y-MP floating point arithmetic, and the prediction of 1,_1 for solutions obtained with

most other floating point arithmetics.

The analytical model Ae _<en2 with e=2-48 and n=16146 predicts a difference in

relative error between the Cray 2 and Cray Y-MP of about 10-6, which compares with

the observed amount of

9.75E-6

for the NASP simulation.

(0.447440472 - 0.4474361 06)
0.447440472

The error imposed on Cholesky factorization by Y-MP floating point arithmetic

increases significantly faster with increasing problem size than that produced by other

floating point arithmetics. Since Cholesky is a highly efficient and well behaved

numerical method for the solution of large positive definite systems, this is apparently

an unsatisfactory situation.



Iterative Refinement

A technique for improving the accuracy of the approximate solution _ obtained

from a factorization such as Cholesky is iterative refinement. The incentive for using

this algorithm lies in its relatively low computational cost compared with the

computation of the original Cholesky factors. Suppose Ax=b has been solved by a

factorization method and an approximate solution _"has been produced. Compute:

r=b-A_

solve GGTe = r for c

_=_.e

(compute residual)

(using the previously computed factors)

Iterative refinement of an nxn system requires O(n 2) flops, while the Cholesky

factorization requires O(n 3) flops. Thus, for large systems the computation of the

factors dominates the total floating point operation count.

Traditionally, the computation of the residual has been performed in double precision, in

which case the procedure is denoted mixed precision iterative refinement (MPIR). This

stems from the observation that usually the factorization technique produces an _ for

which the residual is small, and thus susceptible to cancellation effects. Double

precision computations on Cray computer systems are performed in software, and due to

the nature of Cray floating point arithmetic, are performed at least three times slower

[11] than they could be if implemented using clean hardware floating point arithmetic.

Thus the use of MPIR to improve accuracy has not been as cost effective on Cray systems

as on other systems with clean floating point arithmetic.

Recent work [12] suggests that a modification to the traditional MPIR approach can

efficiently produce significant improvements in the accuracy of the approximate

solution _ when the Cholesky factors are not as accurately computed. Normally, the

Cholesky algorithm produces a factorization that from the standpoint of classical error

analysis is reasonably well behaved. The Y-MP produces a factorization that is not as

accurate. In this case, fixed precision iterative refinement (FPIR) can be applied to the

Y-MP factored matrix to improve the accuracy of the computed solution to nearly the

maximum obtainable using clean floating point with the same mantissa size. FPIR is

identical to MPIR, except that the residual is computed in single precision. FPIR was

applied to the 16146 equation PVSOLVE problem and run on the NAS Cray 2 and Cray ¥-

MP. The results are summarized below. The 128-bit Cray 2 result (without

refinement) and the 64 bit Y-MP MPIR result are presented for comparison purposes.



128-bit

Table 2

Computer Max Displacement Norm of Residual

Cray 2 0.447440341 0.48E-18

64-bit Cray 2 0.44744030 3 0.87E-5

FPIR once 0.447440349 0.39E-5

FPIR twice 0.447440344 0.40E-5

64-bit Cray Y-MP 0.4474361 06 0.13E-3

FPIR once 0.44744027 0 0.38E-5

FPIR twice 0.44744027 5 0.35E-5

MPIR once 0.447440341 0.58E-6

From Table 2 it is clear that one application of FPIR improves the Y-MP solution to

nearly the accuracy of the Cray 2 solution, and the Y-MP residual is smaller. Each

application of FPIR adds about 4% of the solver cpu time to the total cpu time. FPIR does

require increased memory requirements, however, as copies of both the initial matrix

and the factor are required in memory for efficient execution of FPIR. One application of

MPIR produces agreement with the Cray 2 128 bit result, at a cost of about 40% more

cpu time over just the single precision solver alone.

Conclusion

The Cray 2 and Cray Y-MP floating point arithmetic implementations, though quite

similar, have fundamental differences that cause observable differences in the output of

NAS user codes. The Cray Y-MP implementation of floating point arithmetic has

characteristics that cause significant degradation in the obtainable accuracy of the

solution of positive definite systems by Cholesky factorization. This otherwise

unsatisfactory situation is ameliorated by the existence of the computationally

inexpensive FPIR algorithm that should provide nearly full precision results for linear

systems solved using Y-MP arithmetic and Cholesky factorization.
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Appendix A

The Subtract Magnitude Floating Point Operation on Cray 2
and Cray Y-MP

The following is a detailed analysis of the effect the specific hardware implementation of

the subtract magnitude floating point operation of the Cray 2 and Cray Y-MP has on the

accuracy of results.

Floating Point Numbers

The following analysis borrows heavily from [13]. Given integers r and p, define the set

S(r,p) of floating point numbers to be zero and all numbers of the form

(A.1) x = z_m,

where c is any integer (positive, negative, or zero) and m is a positive or negative

fraction satisfying

r "1 < Iml < 1

whose absolute value can be expressed in the base r using at most p digits.

That is,

Iml = r-PM

where M is an integer in the range rP-1 <M < rP. In (A.1) the signed number m is called

the mantissa of x and e is the exponentof x. Note that the exponent is unbounded. In

actual floating point arithmetic implementations the exponent is bounded. Since the type

of error associated with bounded exponents (overflow or underflow) is unimportant

here, the distinction is neglected in the following analysis.

The floating point numbers may be viewed as real numbers, on which the standard

arithmetic operations addition, subtraction, multiplication, and division may be

performed. The result of these operations may not be in S(r,p), however. Since the

result of floating point arithmetic must always be a floating point number, the floating

point arithmetic operations must be defined. For our purposes, the definition of the

subtract magnitude floating point operation (_ on the Cray 2 and Cray Y-MP suffices.

For these machines, r=2 and p=48. The subtract magnitude case arises if numbers

having opposite signs are added or numbers having the same sign are subtracted.
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The Cray 2 Subtract Magnitude Floating Point Operation

To find thefloatingpointdifferenceaE_b, where a > 0 > b, and a > Ibl, put a=rCm and

b=rfn. Assume that a and b are normalized, i.e., the leading digits of m and n are not

zero, unless a and b are zero. Then b----ten', where n'=r-(e-0n is obtained by shifting n to

the right e-f places. We are assuming that there are enough digits in the register to hold

all of the right-shifted nonzero digits of n'. Put n" equal to the high order p digits of n'.

(Bits shifted out of the p digit register are lost, as there is no guard digit.[14]) If the

p+lst digit of n' is a 1, n'"=n"+ 2-P, otherwise n"'=n". (The truncated bits of the

preshifted mantissa are rounded up.) Then

u'= m + n'"<_m < 1.

If u' = 0, set a+b equal to a normalized zero. If u' is not zero, postnormalization may be

required. Let k be the number of leading zeros in u'. Since _u'=_'k(rku'),

g=c-k and u---rku' chopped.

Then aE)b--rgu

Cray 2 Error Analysis

The error is defined to be the difference between the mantissa of the floating point result

when computed in an infinite number of digits and the mantissa of the result when

computed in the implemented floating point arithmetic.

The preshift requires that n shift right c-f places. If c-f > 2, In'"l < r -2, so

u'=m-ln"'l _> r-l-r -2 >_ r -2,

which implies that the number of leading zeros k is either 0 or 1. Therefore, if k > 2,

then c-f must be 0 or 1. When c-f = 0 (no preshift), no error is introduced. When c-

f=l, there are two possibilities: either a zero or a one in the p'th place was shifted right

one place. If a zero was shifted right, n'"=n", so no error occurs after

postnormalization. If a one was right shifted, the answer obtained is one unit less than

the exact answer in the p-k'th place after postnormalization.

10



Example 1

Assume r--2, p=5. Put
a -- .10000x2 o, b = -.1 1001x2 -1
right shift b: n' -- .011001

n" = .01100
round up n"' = .01 1 01

subtract mantissas: .1 0000
-.011O1

.00011

so u' -- .00011, k=3, u= .11000, but the exact mantissa, also produced by clean floating
point arithmetic, is .111000 The error is .11100 - .11000 = .00100 = 2-P +k.

If c-f>2, then In"'-n'l < r-P. The maximum error obtained after postnormalization is less

than plus or minus one unit in the last place.

Example 2

Assume r=2, p=3. Put
a--.100x24, b = -.111x22
right shift b: n' = .0011 1

n" = .001
round up n"' -- .010

subtract mantissas: .1 00
-OlO

.010

Then u'--.010, k= 1, u =.100, g =4-1 --3.

The error is .1001 - .100 -- .0001 < 2-P, and the result agrees with the result
computed with clean floating point arithmetic.

Example 3

Assume r--2, p=3. Put
a = .100x24, b = -.1 01 x2 o

right shift b: n' -- .0010 1
n" = .001

no round up n'" -- .001

subtract mantissas: .1 O0
-.OOl

.010

So u'=.010, k-- 1, u =.100, g =4-1 =3, andthe error is

.1011 - .110 = -.0001 < -2-P. This result agrees with the result computed with clean
floating point arithmetic.
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The Cray Y-MP Subtract Magnitude Floating Point Operation

To find the floating point difference a_b, where a > 0 > b, and a p. Ibl, put a=_m and

b=rfn. Assume that a and b are normalized, i.e, the leading digits of m and n are not zero,

unless a and b are zero. Then b=_n', where n'=r(e-f)n is obtained by shifting n to the

right e-f places. Put n" equal to the high order p digits of n'. (Bits shifted out of the p

digit register are lost, as there is no guard digit.[15]) Unlike the Cray 2 subtract

magnitude case, no roundup occurs, so n'"=n". Then

u' = m + n'" <__m < 1.

If u' = 0, set equal to a normalized zero. If u' is not zero, postnormalization may be

required. Let k be the number of leading zeros in u'. Since reu'=re-k(rku'),

g=c-k and u--rku ' chopped.

Then a_b--rgu

Y-MP Error Analysis

The preshift requires that n shift right e-f places. If e-f>__2, In"'l<r-2, so

,u'=m-ln"'l > r-l-r -2 > r-2,

which implies that the number of leading zeros k is either 0 or 1. Therefore, if k>._2,

then ¢-f must be 0 or 1. When c-f=0 (no preshift), no error is introduced. When c-f=1,

there are two possibilities: either a zero or a one was shifted right one place. If a zero

was shifted right, no error occurs after postnormalization. If a one was right shifted,

the answer obtained is one unit greater than the exact answer in the p-kth place, after

postnormalization. This implies that the subtract magnitude result provided by the Cray

Y-MP floating point can be as much as twice as large as the actual answer when severe

cancellation occurs.

Example 4

Assume r=2, p=5. Put
a = .10000x21, b= -.11111x20
right shift b: n' = .011111

n" = .01111
no round up n"' -- .01111

subtract mantissas: .10000
-.01111

.00001
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So the computeddifferenceis r-P= 2-5 but the exact result,alsoproducedby clean
arithmetic,is 2-6. The Y-MPproducesa result in this casethat is twiceas largeas the
exact result.

Example5

Assumer=2, p=5. Put
a = .10000x2 o, b= -.11001x2-1
right shift b: n' = .011001

n" = .01100
no round up n"' = .01100

subtract mantissas: .1 0000
-.01100

.00100

So u' -- .00100, k = 2, u = .10000, but the exact result, also produced by clean
arithmetic, is .0111000 The error is .011100 - .10000 = .00010

If c-f > 2, then n'"-n' < r-P. Then u'-u < r(p-2), that is, the error is less than one unit in

the third to last place larger than the exact value.

Example 6

Assume r--2, p=3. Put
a = .100x24, b = -.1 01x2 o
right shift b: n ° = .0010 1

n" = .001
no round up n"' = .001

subtract mantissas: .1 O0
-OOl

.010

So u'=.010, k= 1, u =.100, g =4-1 =3,
.1011 .110 =-.0001 <-2-P

and the error is

Example 7

Assume r=2, p=3. Put
a = .100x24, b = -.111x22
right shift b: n' = .001 1 1

n" = .001
no round up n"' = .001

subtract mantissas: .1 00

-.OOl
.011

So u'=.011, k= 1, u =.110, g =4-1 =3, and the error is
.1001 -.110 =-.011 <-2-P +2

The result produced by clean arithmetic for this example is in error by less than 2-P.
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Appendix B

Relative Error and Perturbations to the Diagonal of the

Matrix resulting from the Discretization of Laplace's

Equation on a Square Domain,

This section derives the effect on the error of the solution of the discretized

Laplacian on a square region due to adding a small positive constant e to the diagonal

entries of the matrix. Consider the square domain R: 0 < × < _, 0 < y < _, in which the

numerical solution to the Dirichlet problem for the Laplace equation is to be obtained by

employing the finite difference equation

(B.1) Ui+l,i-2Ui,i+Ui-l,i Ui,i+l-2Uii+Ui i-I
h 2_ - + h2: "-' = 0

With h = #N, R is divided into N 2 square nets with n=(N-1)2 interior points. Let Ah

denote the square matrix formed from the five-point formula on the left-hand side of

(B.1). Then the solution x of the system of finite difference equations (B.1) is given by

x = Ah-lb, where the right hand side vector b is derived by the application of boundary

conditions on [he boundary of the discretized problem domain. Let the n eigenvectors of

-Ah be denoted by Xpq(ih,jh) with the corresponding positive eigenvalues _q, p, q = 1,
2 ..... n-1.

From the defining relation

( B. 2 ) -AhXpq = upqXpq

we have

(B.3) Xpq = sin(pih)sin(qih) p,q=l,2 ..... n-1

(B.4)
1

",_Xl=h--_(2cos(ph) . 2cos(qh)- 4) p,q=l,2 ..... n-1

The matrix -Ah has diagonal elements equal to 4. If the diagonal elements are perturbed

by the addition of a small positive constant e, s << h, the resulting matrix -Ah¢ has

eigenvectors (B.3), and eigenvalues

14



(B.4) p, q = 1, 2..... n-1
1

_¢ = _(2cos(ph) + 2cos(qh) - 4 - e)

Additionally, -Ah_ is symmetric positive definite (as is -Ah). The n eigenvalues _pq and

_pq¢ may be labeled sequentially from 1 to n:

_,I= "blI.....;_n= _'_]-IN-I

The eigenvectors (B.3) can be normalized to unit 2-norm length and ordered in such a

way that the nxn matrix of eigenvectors U is unitary, and diagonalizes AhE, and the

eigenvalues are ordered from largest to smallest:

(B. 5) UTAhEU = A¢, uTu = I

(B.6) diag(A¢) = [_I ...Z¢N]T, _I > 2w.2.> ..._>Z_j,q

Then

(B.7) x = UA-1UTb, xe = UA e-1UTb

Take norms to be 2-norms.

system by

II×-x ll
A¢ =

Ilxll

Define the relative error A¢ of the solution of the perturbed

then

Ae =
IIUA-1UTb-UAdlUTbll

Ilxll

IIU(A-1-Adl)UTbll

Ilxll

IIA-1-AFlllllbll
Ilxll

The 2-norm of the positive diagonal matrix L = A-I-A¢-I is the largest element

of L. Put Cpq = 2cos(ph) + 2cos(qh). The largest element of £ is then
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IILII =

max

Ix]

max
pq I'ePq"1 - _pqe-ll

E

(Cpq - 4)(Cpq - 4 - e)

which occurs when p=q=l. Then

IILII =
e_h_4 _2

(4cos(h) - 4)(4cos(h) - 4-¢) = 4 = 4

So

AC-
IIx-x_ll e.n21tbll
Ilxll <-411xtl

If

libI.___[I 0(1)
Ilxll =

then

Ae _<_2

The relative error from the addition of a small positive amount _ to the diagonal

entries of the matrix obtained from the discretized Laplacian can cause an error that

increases as the square of the number of unknowns in the system. This may be

contrasted to the expected amount of error from classical roundoff error analysis in eq.

(1), from which it can be concluded that the relative error can be as much as the unit

roundoff (u) times the matrix condition number. The condition number of the matrix of

the discretized Laplacian is O(h-2)=O(n) (see for instance [16]). This implies that the

relative error in the solution of the system predicted by classical roundoff error

analysis could be as much as proportional to n: e < un. Thus the amount of error

incurred by adding the amount _ to the diagonal entries of the matrix rapidly dominates

the total error.
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